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T
he two-dimensional (2D) Dirac equa-
tion is relevant in elucidating the
electronic and transport properties

of recently discovered materials such as
graphene and topological insulators. Gra-
phene,1,2 a one-atom-thick allotrope of car-
bon, and the topological surface states of
materials with a bulk gap such as Bi1�xSbx
crystals3 share an unusual Dirac-like elec-
tronic structure providing an enthralling
test bed for new physics and inevitable
future applications based on quantum in-
terference effects.4�6 Given theDirac nature
of the electronic spectrum, the quasiparti-
cles in graphene propagate as massless
relativistic particles, making graphene a
qualitatively different material from con-
ventional conductors. At low temperatures,
the quantum transport of electrons be-
comes coherent and leads to quantum
interference corrections to the conduc-
tance. The amplitude of these corrections
follows a universal scaling with value δG ≈
e2/h receiving the name of universal con-
ductance fluctuations (UCF).7,8 The conduc-
tance fluctuations (CF) take place when a
coherent electron wave scatters repeatedly
while traversing a disordered conductor.
The wave follows all possible paths through
the sample and different paths interfere
with each other, giving rise to CF that are
independent of the sample size and the
degree of disorder. Due to the CF, the
conductivity is sensitive to changes in the
configuration of the impurity scatterers. The-
oretical studies9,10 have predicted that the
full UCF effect is obtained by moving a
single scatterer a distance comparable to
half the Fermi wavelength λF. In gate-doped
graphene the gate voltage controls the
average charge density of the device, and,
given the relationship λF = 2(π/|n|)0.5, the
gate also presents an exquisite control
over the Fermi wavelength. The Fermi wa-
velength diverges as the carrier density

approaches the neutrality (Dirac) point,
making the low-density limit particularly
interesting given that experimentally the
conductance does not go to zero and dis-
agreements between theory and experi-
ments regarding the minimum value of
the conductivity exist.
Recent experimental and theoretical

studies of the CF in graphene have been
reported.4�6,11�20 Berezovsky and col-
leagues19,20 demonstrated unambiguously
the sensitivity of the CF to the motion of a
single scatterer. Placing a charged scanning
probe microscope tip21 near the graphene
sample creates an image charge that acts as
a movable scatterer. By mapping the CF
versus scatterer position, it was found that
the UCF decorrelate when the induced
scatterer is displaced by a distance compar-
able to half the Fermi wavelength.19

In this article we calculate the zero tem-
perature CF for quasiparticles obeying the
massless 2D Dirac equation in the presence
of disorder, assuming elastic scattering by
fixed scatterers and with no sources of
inelastic scattering. The motivation for the
study of this system is 3-fold: First, the
massless Dirac Hamiltonian model is of
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ABSTRACT We study conductance fluctuations (CF) and the sensitivity of the conductance to the

motion of a single scatterer in two-dimensional massless Dirac systems. Our extensive numerical

study finds limits to the predicted universal value of CF. We find that CF are suppressed for ballistic

systems near the Dirac point and approach the universal value at sufficiently strong disorder. The

conductance of massless Dirac fermions is sensitive to the motion of a single scatterer. CF of order e2/

h result from the motion of a single impurity by a distance comparable to the Fermi wavelength. This

result applies to graphene systems with a broad range of impurity strength and concentration while

the dependence on the Fermi wavelength can be explored via gate voltages. Our prediction can be

tested by comparing graphene samples with varying amounts of disorder and can be used to

understand interference effects in mesoscopic graphene devices.
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relevance to transport in graphene and the surface
states of topological insulators. Second, we probe the
sensitivity of the conductance to changes in the im-
purity strengths over a range of carrier densities and
system sizes that are accessible by current experi-
ments. Finally, we calculate the CF due to the motion
of a single scatter. This last result demonstrates the
sensitivity of CF to the motion of an ionized charged
impurity and shows a dependence on the carrier
density that applies to all but the most disordered
graphene devices.

RESULTS AND DISCUSSION

Model. We study the following 2D Hamiltonian:

H ¼ � ipv(σxDx þ σyDy )þ V(r)σ0 (1)

where v is the velocity of the Dirac fermions, σ0 and
σ{x,y} are the 2 � 2 unity and Pauli matrices, and V(r) is a
(pseudo)spin-independent potential. The spinor wave
function applies to graphene near energies close to
the Dirac (neutrality) points with each component
pertaining to one of the two atoms in the unit cell.
Our study is based on a transfer matrix approach to
calculate the conductance of Dirac fermions,22 de-
scribed in the Methods section. The conductance is
modeled by calculating the reflection r and transmis-
sion tmatrices in realistic devices. Although the use of
the Dirac equation does not take into account the
anisotropy of the Dirac cones (trigonal warping) in
graphene, the resulting trigonal distortion occurs at
doping values considerably larger than those pre-
sented here.

Experiments have observed an electrostatic land-
scape with naturally occurring variations in the carrier
density.23�26 In this study we consider such a potential
arising from the random charged impurities located
either in the substrate or above the graphene
plane.27,28 This type of disorder profile is both smooth
and slowly varying on the atomic scale, suppressing
intervalley scattering. The disorder model used in our
calculations neglects scattering from short-range atomic
defects and ripples. This approach is justified by the
long-range (compared to the atomic lattice) nature of
the Coulomb-like charged impurities.

After choosing the average charge density n0 we
introduce local variations in the charge density either
through randomness of the on-site carrier density at
each lattice point ηj or from ionized impurities near the
graphene plane. In the first case, the contribution of
the spatially varying on-site carrier density is distrib-
uted uniformly with width Δn [n(r) = n(rj) = n0 þ ηj
with�Δne ηjeΔn]. In the latter procedure, a fraction
ni of the lattice sites are randomly chosen, and an
ionized impurity center is located a distance away. We
solve for the charge density induced from this set of
ideally screened Coulombic scatterers. Using the rela-
tionship between the Fermi energy and carrier den-
sity we obtain the local scattering potential that is used
in eq 1, V(rj) = pv sgn(n(rj))(π|n(rj)|)

1/2. Note that the
square root means that the contributions to the po-
tential do not add arithmetically. In this simple model
the random on-site component dominates at low
carrier density and its contribution diminishes as the

Figure 1. Conductance fluctuations of Dirac fermions. The CF are plotted in terms of the standard deviation of G (δG in e2/h)
versus carrier density n (in cm�2) for several values of the fluctuations in the carrier densitywidthΔn (frombottom to topΔn=
1.0, 2.0, 3.0, and 4.0� 1012 cm�2) and system sizes (a) L = 170, (b) L = 350, and (c) L = 670 nm. (d) Transmission permode at the
Dirac point for different values of Δn. After the first mode, all other modes come in degenerate pairs with only one shown in
the plot. (e) Scaling of the CF with system size for different values of Δn. The length of the sample is varied with a fixedW/L
ratio of 3.
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overall charge density increases. Although our ap-
proach overestimates screening at the interface of
hole-rich/electron-rich regions, the charge of the scat-
terers is chosen to yield an rms charge density in
agreement with the observed charged puddles.23,24

A more rigorous (quantum) treatment27 of the density
response is limited to system sizes significantly smaller
than those we have investigated in the present work.

Conductance. The conductance is obtained from the
Landauer formula

G ¼ G0∑
N

n

Tn ¼ G0Tr[tt
†] (2)

where G0 is the quantum of conductance (4e2/h for
graphene due to spin and valley degeneracy), N is the
total number of transversemodes in the sample, and Tn
are the transmission eigenvalues obtained from the
diagonalization of thematrix product tt†. The transmis-
sion matrix t is obtained using the transfer matrix
approach. The details of the calculation are described
in the Methods section.

Conductance Fluctuations. Figure 1 (a�c) presents the
CF, with δG defined as the standard deviation of the
conductance, as a function of carrier density in the no
decoherence limit. Measurements of the magnitude of
the CF at the Dirac point have yielded mixed results. In
weakly disordered bilayer and trilayer graphene de-
vices the UCF are suppressed near the Dirac point.13

Although the presence of more than one layer of
graphene substantially changes the electronic proper-
ties of the device,2 possible explanations for the sup-
pression of the fluctuations13 involved a different
mechanism for quantum interference of edge states,
which dominate the conductance of the low-density
samples. A reduction of the amplitude of the fluctua-
tions was seen in monolayer graphene devices17,19

contrasting with a study18 in which the amplitude of
the fluctuations is larger at the charge neutrality point
for both monolayer and bilayer graphene devices.
Our calculations, covering a broad range of impurity

strengths and concentrations, finds that the amplitude
of the conductance fluctuations at the Dirac point for
sufficiently strong fluctuations in the carrier density
Δn > 2.0 � 1012 cm�2 exhibits a peak. In contrast, the
CF decrease at exactly the Dirac point for weak on-site
density fluctuations.

The suppression of the CF in weakly disordered
systems is due to the reduced size of the fluctuations in
the cleaner systems coupled to a reduced number of
modes open to conduct.30 Figure 1d shows the trans-
mission for the first modes at the neutrality point for
several values of the on-site carrier density averaged
over several disorder configurations in L = 350 nm
systems. All systems, independent of the amount of
disorder present, have at least one mode completely
open. In the clean systems, the second mode is only
partially open (T = 0.06). Disorder opens up the sub-
sequent modes for transport as can be seen in
Figure 1d where error bars show the fluctuation for
each of the modes. Assuming that the CF are propor-
tional to the fluctuations in each of the modes, the
suppression of the CF is due to the smaller fluctuations
in the cleaner systems coupled to the reduced number
of modes open to transport.

In Figure 1ewe plot the averaged CF as a function of
system size. For systems with a fixedW/L ratio of 3, we
vary the length from 170 to 670 nm. As the strength of
the on-site carrier density increases, the value of δG
converges to 2.17( 0.15 e2/h, close to the value found
analytically for doped graphene of 2.36 e2/h in the
W/L. 1 aspect ratio limit.14,15 The value is higher than
the UCF value (e2/h) because of the absence of inter-
valley scattering and trigonal warping, both absent in
our model.

Sensitivity to Motion of a Single Impurity. Similarly, we
compare the CF from different impurity configurations
to the CF induced by the motion of a single impurity.
Themethod developed by Tworzydlo et al.22 is suitable
to revisit a landmark study carried out by Feng et al.
for metallic systems.10 We obtain the conductance of

Figure 2. Conductance fluctuations due to the interchange of two on-site densities. The rms deviation of the conductance
upon interchange of the local charge density of two sites (ηj) for several values of the fluctuations in the carrier density with
width Δn (from bottom to top Δn = 1.0, 2.0, 3.0, and 4.0 � 1012 cm�2) and system sizes (a) L = 170, (b) L = 350, and (c) L =
670 nm.
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massless Dirac fermions for a discrete lattice model
with random on-site charge densities (similar to the
Anderson model) and calculate the rms deviation of
this conductance δG1 after the interchange of on-site
charge densities of just one pair of sites. In Figure 2 we
plot δG1 as a function of carrier density for several
system sizes averaged over different realizations of the
randomdensities and for several widthsΔn over which
these on-site values are chosen. While an increase in
the strength of the on-site carrier density produces an
increase in the rms value of CF, we found δG1 is
independent of sample size. Our calculation chooses
two sites to interchange at random, and as such
their separation can be small or their on-site values
similar. Thus, although the average value of δG1 is
lower than the average value of δG, in general δG1 is
bounded by δG.

For weak disorder and small system size (Δn = 1.0�
1012 cm�2 and L = 170 nm), CF for both the complete

configuration change (lower curve in Figure 1a) and
upon interchange of two sites (lower curve in Figure 2a)
exhibit oscillations as a function of the carrier density.
In such systems ballistic transport dominates, that is,
the transport mean free path is larger than the system
size l > L. The oscillations in the CF as a function of
density are caused by multiple reflections at the ends
of the sample (Fabry�Perot resonances) where the
enhancements are due to multiple visits.31,32

Finally, we consider the change in conductance
induced by the motion of a single charged impurity a
distance δr. A fraction of lattice sites are randomly
selected and charged impurities are placed above their
positions (r1, r2, ..., rNi

) inducing a charge density land-
scape such as the one presented in Figure 3a. Such an
experiment was undertaken by Berezovsky et al. where
the device conductance wasmeasured as a function of
SPM tip position, and the movable scatterer is created
by the SPM tip.19 We present such conductance maps

Figure 3. Evidence of the conductance sensitivity of Dirac fermions. (a) Typical carrier density fluctuations resulting from
random charged impurities localized in the substrate or above the plane in a graphene device. The concentration of charged
impurities is 20% of sites, and they are located 1 to 10 nm away from the graphene plane with a charge of (2e, yielding
density fluctuations n(r) ≈ 1.6 � 1012 cm�2 for system sizeW = 1.005 μm and L = 670 nm. (b) Conductance maps, the device
conductance versus the position of the movable scatterer, at two different carrier densities simulated by raster scanning a
single charged impurity over a 400� 400 nm2 area of the sample. Themaps display spatial CF δG1≈ e2/hwith the lateral size
of the fluctuation features depending on the carrier density. (c) Plot of the conductance change δG1 versus the charge density
n and the distance δr that a single ionized impurity moved, averaged over 2000 impurity ensembles. The black dashed line is
presented as a guide indicating the length lr where UCF theory predicts that the motion of a single impurity will induce a
change in the CF comparable to that of a new configuration of impurities.
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obtained from raster scanning one of the impurities in
Figure 3b. Maps are presented for two different carrier
densities and show that the lateral size of the fluctua-
tions depends on the carrier density. It was shown that
with length lr that a strong scattering center needs to
be shifted to decorrelate the CF (i.e., to change the
conductance by∼e2/h) is approximately half the Fermi
wavelength.19 This length was obtained from the
autocorrelation function of the conductance maps
and studied as a function of the carrier density.19 In
this new study, we calculate the conductance change
for the motion of one impurity

δG1(δr) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(G(r1:::, rNi

) � G(r1, :::, rNi
þ δr))2

q
(3)

over a range of system sizes and carrier densities
for several impurity densities, accessible to current
experiments.

For diffusive metallic systems δG1 is given by10

(δG1)
2 � e4

h2
Ω

Nild
L

l
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kFδr

1
2
kFδr

0
BB@

1
CCA

2
2
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whereΩ is the volume and d the dimensionality. In 2D
systems, the L/l factor drops out and Ω/Nil

2 corre-
sponds to the strength of the impurities. Equation 4
predicts that if kFδr g 1 the change in conductance
from the motion of a single impurity will be compar-
able to the complete change of the impurity config-
uration in a sample. In Figure 3c we show the rms
fluctuations of the conductance as a function of carrier
density and distance moved by the impurity. The

dashed line in the plot indicates the length lr = 0.46λF
separating the regions at which motion of a single
impurity will impact the CF as if the impurity config-
uration was completely different. As evident in
Figure 3c, these computed results indicate a devia-
tion from conventional UCF theory10 for 2D electron
gas of Dirac fermions. In connection with previous
studies,19 the lr length obtained from the autocorre-
lation function will saturate at certain values of the
carrier density. One of the main findings of this
article is that the trend presented in Figure 3c applies
to samples where the carrier-density fluctuations
range from 109 to 3 � 1012 cm�2, that is, for all but
the dirtiest graphene devices.

CONCLUSION

Wehave focused on the CF of Dirac fermions and the
impact of the motion of a single impurity. Our results
predict that the CF in 2D Dirac systems are dependent
on the strength of the disorder near the neutrality point
in ballistic systems but independent of the strength of
the disorder for doped graphene. For strong enough
disorder, as is the case of graphene on SiO2 substrates,
the CF will not depend strongly on carrier density but
are enhanced at the Dirac point. The study of CF on
suspended graphene32 and graphene deposited on
hexagonal boron nitride substrates33 can test these
predictions. Consistent with theoretical predictions,
the change in conductance caused by the motion of
a single impurity (covering a small area of the sample)
is significant when the distance moved is of the order
of the Fermi wavelength.

METHODS

Transfer Matrix Approach. We sketch the transfer matrix pro-
cedure used, for further details we refer to Tworzydlo et al.22

The system is discretized into a lattice and the difference
equations are solved without violating symplectic symmetry
and current conservation while avoiding the fermion dou-
bling problem.22 We calculate the conductance in a strip
geometry, discretizing the sample using a square lattice. The
longitudinal direction extends from x = 0 to x = L and
the transverse direction from y = 0 to y = W, where L and W
are the length and width of the sample. Periodic boundary
conditions are used in the transverse direction. The transfer
matrix reads

Ψmþ 1 ¼ M mΨm (5)

where Ψm is a vector containing the values for the wave
function Ψ(x,y) at x = ma0, with m being an integer and a0 =
10 nm being the lattice spacing. Semi-infinite metallic leads
are attached to the strip at its ends (x = 0 and x = L). The metal
contacts are ballistic leads in which all modes are con-
ducting.29 Each incoming mode on a lead is propagated to
the other lead using the transfer matrix. The N transverse
modes in the sample are either propagating modes φl or
evanescent modes χl (modes that decay for large positive or
negative values of x). An incoming wave function in mode l0

starting on the left side of the sample is composed of
incoming, reflected, and evanescent modes

Φl0 (x ¼ 0) ¼ φþ
l0
þ ∑

l

rl, l0φl
� þ ∑

l

Rl, l0χl
� (6)

at the x = L edge of the sample the wave function is the sum of
the transmitted and evanescent waves given by

Φl0 (x ¼ L) ¼ ∑
l

tl, l0φl
þ þ ∑

l

R0
l, l0 χl

þ (7)

where the label “þ” corresponds to right moving and “�”
corresponds to left moving modes. The reflection rl,l0 and
transmission coefficient tl,l0 are obtained from the transfer
matrix relation

Φl0 (x ¼ L) ¼ M Φl0 (x ¼ 0) (8)

and elimination of the R and R0 coefficients. Once this is done
for all possible modes the reflection r and transmission t
matrices are composed. Similarly, repeating the procedure
for modes propagating from the right to the left edge of the
sample results in the r0 and t0 matrices.22 The conductance is
calculated using the Landauer formula, eq 2, by summing
over the transmission eigenvalues Tn obtained from the
diagonalization of the matrix product tt†.
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